How Do You Record Diversion Data? Water Level Loggers, Value Vs. Costs

Recording is the other half of measuring diversions from streams, under California’s new water diversion measurement and reporting regulations.  Diverters are required by law to measure flows at frequencies based on the volume of water diverted in a year.  The flow has to be measured and recorded.  Of course diverters may not care about the data – it costs money and it doesn’t add income.  What you and I want in all of our purchases is the best value for the money.swrcb_flow_meas_frequency-edited

For very small diversions, flows have to be recorded weekly.  That may be easy to do depending on the location and access to the diversion.

Shawn_Sticking_WeirFor medium-sized diversions, flows must be recorded daily.  This is possible, but
it doesn’t allow for the owner or employees to have time off, travel, and so on.  At this level of recording, an automatic recorder of some type is necessary.  Large diversions must be recorded hourly, and automatic recording is the only practical way to be sure flows are recorded.  That is the subject of today’s post: automatic recording of flows, or what is really done most of the time, recording water levels and using equations to calculate the flow.

About_1.4_cfs_over_weir_edited_smallWe will leave aside the discussion of propeller, acoustic Doppler, magnetic, and other in-line meters.  If you have a diversion that goes through a long length of straight pipe, one of these devices can be bolted in or strapped on.  This post is about open diversions into a ditch, where an instantaneous measurement device (weir, orifice, flume) already exists…or may be installed soon.  These open devices do not measure flow directly, they measure the water level.  An equation is used to convert that level to a flow.

There are hundreds of devices (ready to go) and components (connected parts) to measure water levels.  There are also hundreds of loggers that collect data.  Here, we will look at 4 water level sensors connected to data loggers, called water level loggers.

Onset has a neat Bluetooth Hobo water level logger.  This may help  to satisfy the Water Board’s telemetry requirements starting January 1, 2020; the data must be updated weekly on a website, and downloading data weekly is easier with this logger.  We’ll see what the Water Board says as this rolls out.  The MX-2001, with the cap removed, hooks up to the MX-2001-TOP with a cable, and once installed, is downloaded with the free Hobomobile smartphone app.  The app does everything you’d normally need a data shuttle and cable for – starting, setup, configuration, downloading, and stopping the logger.



The top unit with the Bluetooth radio has to be out of the water, so of course the top of the stilling well holding the unit has to be 1.0 feet or higher up out of the water.  If the stilling well is galvanized iron pipe, you’ll need to get within a few feet to download it.  If you are using PVC you might get a connection at 100 feet.

Will two units close to each other interfere?  Nope, the app finds both and lets the user choose which unit to work with.  As with any water level logger installation, keep a logbook or spreadsheet with the Serial Numbers for each location so you aren’t confused later.

What about barometric pressure?  The TOP unit records barometric pressure, so you don’t need a second unit for atmospheric pressure, nor do you have to know the elevation difference between two separated units.  The unit subtracts atmospheric from absolute pressure, then gives you all 3 values when you download:  absolute, atmospheric, water only.  That makes data processing much easier.

In California, you should be able to get one of these shipped to you for $750.  Compare that to the regular Hobos, which need one in the air, one in the water, and a data shuttle and cable.  It would put you back almost $1,000 to get the separate pieces shipped to you.  If you have two or more locations to log, then the old style is less expensive as far as parts go.  Still, the Bluetooth version is likely more cost effective when you consider the minutes saved each time the Bluetooth unit is downloaded, compared to unlocking or unscrewing the cap, getting the water unit out, downloading it, and replacing the cap or lock.

The next is a setup that rancher and retiraqua-plumbed aircraft engineer Frank Crowe uses.  Frank’s desire was to save him and his neighbors money, so he put together the Vegetronix Aqua-Plumb Water Level Sensor connected with the Logger-8-USB.  Together these are $340, which is
the least cost of anything that I have seen.  Add shipping, tax, logger-8-usb
and $60 in other parts and batteries, and for $450 you’ll have the parts you n
eed for moderately durable, reliable, and accurate water level logger.  Not only that, but 
the Logger-8-USB has 8 channels altogether, so a diverter could measure up to 8 water levels at once by adding 7 more sensors at $95 apiece, not including tax and shipping.

Here is Frank’s latest setup with his comments: “Finally was able to put together a prototype package for the vegetronix_frank_1_p1300077vegetronix_frank_2_p1300078Vegetronix sensor.  The box is a little bigger than needed, but seems to work.  I’m trying to get the data to download into something I can analyze, but it seems to work very stable.

The pipe is 3/4″ mounted to the box, with the sensor wire going down to about an inch from the bottom and then returns up over 12″, therefore doubling the sensitivity.  The end is held by some wire at the moment, but would probably work better with a stainless steel spring.  The top of the pipe is not sealed, but should be to keep the humidity out of the box.  Of course if the data logger were in a separate box, the seal would not be necessary.

To exercise the thing, it is stuck into a 3″ pipe with a water drip going in and a drain at the bottom.  The overflow hole is 13″ above the bottom.”

So, what is the trade-off?  If you are handy, somewhat experienced with electronic components, and willing to spend some hours, you can set this up yourself.  Frank can help a few of his neighbors, but he has his family and ranch requiring his time, too.  Otherwise, it is going to cost a couple hundred dollars or so for someone to set this up for you.  It needs to be checked, maintained, and adjusted more often than the integrated water level loggers, too, so the maintenance and downloading cost can be $50 to $100 per year if everything is working well.

Next, the Onset Hobo U20L-04 Water Level Logger is $300 before shipping and tax.  The DWR Groundwater folks I worked with for years, use these in groundwater wells.  They are easy to set up – program one and place it in a stilling well.  Take it out once or twice a year to dowonset_hobo_u20l-04-editednload the data.  The battery life is 5 years, maybe more.

Why aren’t these automatically the cheapest option?  They may be the cheapest if a diverter has 2 diversions or more, or several neighbors are using the same Hobo U20L-04.  However, they are not vented, meaning that as atmospheric pressure changes due to low pressure areas and storms, the device’s pressure reading will not be as accurate.  Therefore  Onset recommends having a second U20L-04 set up outside the water to measure the pressure change over time.  The second device can be some miles away, so one outside calibration device could be used for several in the water within a 100-square-mile area.

What I heard from colleagues is that these did not last for 10 years, and often not for five years.  Durability and reliability of a device are important for uninterrupted data, and therefore compliance with the Water Board’s regulations.  The more often onset_u20l-xx_handhelda device has to be replaced, the more it costs over time.

A download shuttle and cable are also required to get the data from the Hobo to your computer – delivered cost about $300.  In summary, the delivered cost of two Onset Hobo U20L-04 devices and the download kit is about $1,000.  This cost may be reduced somewhat if the cost of a calibration device can be shared between several diverters, or several diversions.

The third device discussed here is the Global Water WL-16.  This is an integrated, vented device, designed to program and set in a pipe.  Watermasters have used these for years at various diversions.  The delivered cost is about $900.global_water_wl16-edited

The WL-16 has a stainless steel casing and is fairly tough.  They should last a good 5 years.  The problem is at the sensor end – it is relatively easy to clog up in warm-water conditions, with algae and/or silt.  In cool flowing water, it might operate for the whole irrigation season.  In warmer or still water, it will have to be checked and sprayed clean every 1 to 3 months.  Watermasters have put the sensor ends in distilled water in baby-bottle bags, and rubber-banded the tops of the bags closed to keep the sensors clean for the entire irrigation season.

One other concern which I have not discussed with the manufacturer – the manual for the WL-16globalwater_wl16_in_field was updated in 2009 and refers to Windows XP, not the current Windows 10.  I am sure that a newer manual is sent out with the device when it is purchased.  Overall, with some care to check the sensor end and clean it as necessary, this is a great drop-it-in-and-turn-it-on option.

The fifth water level logger discussed here is the PMC Versaline VL2111 – WLS-31 Water Level Datalogger.  This looks much like the WL-16, but instead of a silicon bladder at the end of sensor, it has a non-fouling ceramic sensor.  At $1,370 before tax and shipping, it has the highest purchase cost of the 4 listed in this post, but it is my recommendation for durability, reliability, and low maintenance.


The Versaline is made for wastewater; in other words, for sewer lines.  The datalogger end is vented and it is not supposed to be submerged, same as the Vegetronix components and the WL-16.  However, it is made to put inside manholes where it is very warm and humid.  The PMC guys have maintained the sensor end in rough environments with the equipment lasting 8 to 12 years.  If the sensor gets completely covered with algae (or something worse), it still works.  It can be cleaned off with a toothbrush if it seems so clogged it might prevent water from getting to the ceramic end.  The data logger and sensor are fairly new but are improvements on the older, long-lived versions.

The VL2111 – WLS-31 is three times the cost of the least-expensive option.  However, it might be the least expensive in the long run…it sure is the most worry-free of all the options listed here!


Heavy Snow & Rain For Valentine’s Day

Everyone knows we’re getting snow and rain well above average for today!  Hopefully folks can take a day to celebrate before Valentine’s Day.  After this we may be worried about floods; precipitation will be appreciated when the irrigation season starts.

Snow, compared to the April 1 average:

  • South:  98 percent
  • Central:  100 percent
  • North:  88 percent

Rainfall, compared to the average amount for today ( Feb. 13):

  • South:  119 percent
  • Central:  118 percent
  • North:  106 percent



How to Divide Up a Decreed Water Right

Back in 2005, Arnold and Eileen Williamson bought property near South Cow Creek in Shasta County.  They live in San Bernardino and plan to retire early, and build a new house on their land.  The parcel is part of an old ranch just off Highway 44.

The Williamsons paid $220,000 for the 3.55 acre lot.  That seemed high compared to similar parcels in the area, but they were assured the land has adjudicated water rights from South Cow Creek.

Arnold and Eileen brought their travel trailer to live on the land while they are building a new house.  Their savings account is in good shape so they are going to build a nice 2,200 square foot, single story ranch house with a garage and a shop.  They talked to a well driller 10 years ago and he assured them it would be easy to put in a well, for a cost of around $18,000.Williamson_Overview

When Arnold and Eileen went to get a permit to drill a well, they ran into unexpected problems.  Parcels on either side have their septic systems close to the common property lines, so their possible well locations are few.  Maybe a bigger issue is the passage of the Sustainable Groundwater Management Act in 2014.  Will their pumping rate be limited, and will their well-drilling permit application get held up?

Now the Williamsons are checking into their surface water right.  Is it enough for some pasture for horses and a few cows, in addition to the house and garden?  The Turings who live on the east side say there are no water rights.  The Poulans, to the west, say they have lived here for 6 years and they have never had water – they think the water right was bought off the place, or lost because of non-use.Williamsons_and_neighbors  Now the Williamsons are upset and headed toward just plain mad.  The real estate agent said they had rights, and didn’t the title companies insure it??  After a few frantic calls, they found out that title companies don’t insure water rights.  But, their realtor gave them the number of some folks over on the north side of the highway, and they have a “decree map”.  Arnold and Eileen head over to the Winters’ place to look over the maps.  Brad and Jenny Winters even have a web address where the decree and maps can be downloaded:  The Water Board’s web page has the decree, but no maps:


It turns out that the Cow Creek adjudication does not have maps, but an engineering report done a few years before the decree was issued does have the maps.  Brad and Jenny have that report, too, so they have Sheets 1 through 5 showing the “Diversions And Irrigated Lands” on Cow Creek.  Besides that, they have the link to where they can get the South Cow Creek decree, and a link to a blog that has the maps not on the Water Board’s web site:  Sheet 5 covers the area including the Winters and Williamson places.  Sheet 5 has a lot of “irrigated lands”Leggett_Focus_Area according to the legend – the green areas.

By looking at the maps, and their Assessor Parcel Map they have in their escrow package, it sure looks like their property is completely within the green area.  Great!  Now, how do they figure out if they actually have a water right?

Arnold and Eileen wonder, can they figure this out themselves?  Brad and Jenny tell them, they sure can, and there is a document online that explains how to do it:  They take a look at it and see that, yes, the document fully explains the process, but it requires having either AutoCAD or GIS software.  Also, it will take deep familiarity with the decree – and it is starting to look like a 3-day job just to understand it enough for their parcel!  Arnold and Eileen don’t have the software or experience, so they decide it’s not worth their time to learn this…and they are not sure if they can do it right.

AP_Map_59-98_croppedAfter asking around, Arnold and Eileen figure out they will need to see an attorney.  They call around and find out there are a couple of engineering companies that can see them faster, and they might cost less.  They picked Rights To Water Engineering to help figure out their water rights.  Within a couple of weeks, they have a nice report in their hands and answers to their questions.  So what did they find out?  The map below is one of several from the report they got from the engineer, showing their property boundary on the 1965 decree map of irrigated lands:Ex_2_Williamson_Parcel_Outline_on_DecreeMap_reduced

The report cost $1,500.  The engineer warns them that if it gets contentious and they can’t work out access to the water with their neighbors, they may end up having to get legal help.  He recommends a couple of local water rights attorneys if it comes to that – there are some good lawyers who specialize in in water rights.  For now, though, they have documentation they can discuss with their neighbors to work on getting their water right to their property.

Their property is on land that back in 1968 belonged to Howard and Gladys Leggett.  It has an adjudicated second priority water right for irrigation equal to 0.063 cubic feet per second, or 28.5 gallons per minute, 24 hours a day, 7 days a week, from March through October.   This 2nd priority right is less than the second and third priorities on the upper creek and tributaries, but it is the highest irrigation priority on the lower creek.  Back when the property was flooded, that was usually enough to flood irrigate their entire lot to grow pasture or hay.  That’s great news!

As natural flows drop during the summer that amount is reduced and everyone with a lower creek second priority has to reduce their diversion by the same percentage.  In normal and wet years they could keep their pasture, hay, or whatever else they plant, irrigated for most or all of the irrigation season.  And whether or not they use the water, the right does stay with the land and protect their property value; there is no provision for the expiration of water rights in the decree (the same as for nearly all surface water rights decrees).

What else was in their report?  There was a cover letter, and next some excerpts from the decree.  Schedule 1 lists the places of use for all the original owners.  The Leggetts’ description takes up most of page 60; the Williamson’s property is on the 69.8 acres listed in the second paragraph for the Leggett land:



Schedule 2 lists all the points of diversion, whether gravity diversions or pumps.  The Leggett property actually could get water from two diversions, a pump from the creek, and a proposed second, movable diversion on the creek.  That’s convenient – per the decree they could already divert their water from someone else’s existing diversion, or pump their water from Diversion 95, or they could get it from anywhere they can get agreement from the landowner!SCow_Sched2_Leggett_Points_Of_Diversion


Schedule 6 lists the water rights for Lower Cow Creek – other schedules have rights for the upper creek and tributaries.  This is interesting: there are four priorities of rights and this part of the Leggetts’ property has


 a 1st and a 2nd priority right.  What does that mean exactly?  The decree explains that 1st priority rights are domestic – houses and gardens.  It’s a very small right and it is not clear whether or how it should be divided up among the all the subdivided parcels that used to be the Leggett ranch.  The engineer noted it in the cover letter.

How was the water right calculated for the Williamsons?  Using a geographic information system, or GIS, the engineer used his training and years of experience to precisely overlay the Assessor Parcel Map on the decree map.  Then he measured the acreage for both, and prorated the water right by area.  The following screenshots of the Excel spreadsheet shows these calculations.




Time to fess up: this was a water right subdivision of a fictitious, made-up parcel of land, and the Williamsons don’t actually own it.  However, this story is one that happens every day, when a landowner asks “How much is my water right, really?  Can I divert for hay, stock, pasture, wildlife habitat, crops not mentioned in the decree, an orchard, ……… ?”  Having information before arguing with neighbors, seeing attorneys, sending legal letters, and going to court, can help smart people who generally have good relationships work out happy and agreeable solutions.  The Williamsons were smart and talked politely with their neighbors, the Turings and Poulens and Winters’s.  Now they have a good basis to live peacefully in their neighborhood for many years, and Arnold can borrow Charlie’s lawnmower until he gets his own.


Good News Jan. 18, 2019 – Rainfall, Snowpack Up To Average

Here’s some good news!  Rainfall and snowpack are up to average as of January 18, 2019.  The plots below are from  –>  Precipitation  –>  Tulare / San Joaquin / Northern Sierra Plots, and –> Snow –> Daily Regional Snowpack Plots.   We have been praying for rain and snow, and the Good Lord is providing it:

Installing Reservoir Staff Gages

How is a staff gage installed in a reservoir?  The typical way is to drive a piece of 2″ galvanized pipe into the ground, deep enough to so it isn’t easy to push over.  If cattle will be in the reservoir to get water, then the pipe needs to be really well installed.  A gas-powered post pounder can be rented at Rental Guys, Home Depot, or similar places.

Most reservoirs are deeper than six feet, so it’s best to maximize the length of pipe installed.  The length of pipe that can be installed by hand is usually about 6 feet.  For a 6-foot tall pipe, about 3 feet of pipe needs to be in the ground, so the total pipe length is 9 feet.

Then the staff gage is attached to a 2″ x 8″, using screws or small bolts.  Staff gages vary in width from 1″ to 4″; the usual USGS Style C staff gages are 2-1/2″ wide.  Once the staff gage is screwed on, the board is U-bolted to the pipe.

That’s it…except for the surveying part.  The top of staff gage needs to be at the same level as the spillway crest, so the maximum water surface elevation can be measured.

If the reservoir is deeper than 6 feet, and most are, then staged staff gages may be needed.  The first gage is installed at the top, going from, say, 6 feet to 12 feet.  The second, lower staff gage is installed from 0 feet to 6 feet, and 6 feet is exactly the same elevation on both staff gages.  In the photo below, there are 3 staged staff gages to measure 18 feet in elevation.  The top of the third, lowest staff gage can be seen in the bottom right corner.

What if a pond is full, or mostly full?  It is still possible to install a staff gage, but it will be harder.  Boats or rafts will be needed, and the pipe with the board already attached has to be put in place and held vertical while being driven.  If the total depth is greater than 6 feet, then a longer pipe, board, and staff gage will be needed, and the combined weight will be that much greater.  Hint: tie a rope and buoy to the pipe so when if it slips and sinks, it can be pulled up again.

What about installing a staff gage along the slope of a dam, to avoid having to wrestle a pipe and board for a deep installation?  This can be done by attaching a length of rebar or pipe to the dam face using concrete stakes or similar method.  The slope distances measured are converted to vertical depths.  However, this won’t stand up well to cattle or elk traffic, and it is more liable to be vandalized if the reservoir has easy access.

Option For Pipe Flow – Seametrics Paddlewheel Meters

How do you measure flow in a pipeline?  The simplest

McCrometer Magnetic Meter

way is integrated, saddle-mounted propeller or magnetic meters.  For example, see the post on McCrometer magnetic flow meters:  Propeller meters look much the same.  Both mount through a hole cut in the pipeline, making them quick to install, and easy to remove for maintenance.  These meters can handle some sediment and still be accurate, although water with a lot of silt and sand wears out propellers faster. 

McCrometer Propeller Meter
Installing Propeller Meter



What about cost?  For integrated meters, the costs start at about $3,200 delivered, and go up with diameter.

If you want to spend the least amount of money and still have accurate flow

DL76W Wall-Mount Data Collector

measurement, a paddlewheel meter may be a good solution.  These can be integrated, or can be assembled from the meter, data collector,

IP800 Paddlewheel Meter

display, and possibly other parts.


For an idea of the cost, an IP 800 paddlewheel meter, FT450 display, and DL76 data collector for a small pipeline cost about $2,000 delivered. 

FT450 Data Display

That is about $1,200 cheaper than a magnetic meter for the same-sized pipeline.


So, why not always use a paddlewheel meter rather than more expensive magnetic or propeller meters?  Paddlewheels wear out faster if there is sediment in the pipeline.  I have seen installations where pumping from a muddy river wore out a paddlewheel

Saddle for Paddlewheel Meter

in a year, but a propeller meter lasted 3 years pumping from the same river before needing refurbishment.  The shaft and wheel can be replaced in the field, at a lower cost than propeller or magnetic meter refurbishment.  However, busy farmers and ranchers don’t have time to check the paddlewheel once or twice a year, so the meter installation is at a greater risk of losing data than a propeller or magnetic meter.

Paddlewheel Meter in Saddle

If you are brave or experienced enough, you could get a paddlewheel integrated with the data collector, and no external display.  This would get your delivered cost down to about $1,500.  Data needs to be downloaded more often, perhaps every 2 to 3 months, to ensure the meter is working correctly.  Also, the meter needs to be installed from the side, not the top, so more clearance is required to the side.

DL76 Data Collector Mounted on Paddlewheel Meter

Riparian Rules by Chuck Rich

An oldie but still the best summary of riparian rights that can fit on both sides of an 8-1/2″ x 11″ sheet of paper:

Riparian Rules by Chuck Rich, State Water Resources Control Board, 2007


  1. A riparian right exists by reason of ownership of land abutting upon a stream or body of water and affords no basis of right to use water upon nonriparian land.
  2. A parcel of land generally loses its riparian right when severed from the stream channel via a parcel split (i.e., “physical severance”) unless the right is specifically reserved for the severed parcel in the deed of transfer or other conveyance document. However, the California Supreme Court has held that where a physical severance has previously taken place, if the severed tract was receiving water from the creek at the same time the conveyance created the severance, that fact can be used in court to argue that the grantor and grantee did not intend any severance of riparian rights notwithstanding the physical severance, and the riparian right might be preserved as a result – if the court so decides. The riparian right also may be lost when transferred apart from the land by grant, contract, or condemnation. Once lost or severed, the riparian right can NEVER be restored.
  3. Riparian water right holders may only divert a share of the “natural streamflow” of water in the stream. “Natural streamflow” is the flow that occurs in a watercourse due to accretions from rainfall, snowmelt, springs and rising groundwater. To the extent that flow in its natural state reaches or flows through their property, riparian right holders have a proportional right, based on need, to the use of the natural flow.
  4. A riparian right does not allow diversion of water that is foreign to the stream source. Water that is: a) imported from another watershed; b) stored and subsequently released later in time into the stream system from upstream dams; or c) irrigation runoff generated from the application of percolating groundwater applied to upstream lands; is not available for diversion under a riparian claim of right.
  5. Water diverted under claim of riparian right may only be used on the parcel of land that abuts the stream – – unless the severed parcel’s riparian status has been somehow retained (see #2 above), and then only on that portion of the parcel that drains back into that portion of the stream from which the water was originally diverted.
  6. In order to divert water under claim of riparian right, the diverter must use the water on riparian land but need not own the land at the point of diversion. That is, the diversion may be made at a point upstream (or downstream) from the land being served so long as permission is granted to use that point of diversion and intervening land owners between the point of diversion and place of use are not adversely affected by such practice. However, water cannot be diverted upstream or downstream under a riparian claim of right if this water would not have reached the diverter’s land in the “natural” state of affairs. (In other words, the land is only riparian to the stream when the stream, in the natural state, would actually reach or touch the parcel in question.)
  7. Riparian rights are not lost by nonuse of the water.
  8. “Seasonal storage” of water cannot be accomplished under a riparian claim of right. “Seasonal storage” is generally defined as the collection of water during a period of excess flow for use during a period of deficient flow. However, water may be retained for strictly “regulatory” purposes. “Regulatory storage” of water means the direct diversion of water to a tank or reservoir in order that the water may be put to use shortly thereafter at a rate larger than the rate at which it could have been diverted continuously from its source. Regulatory ponds should generally be drained at the end of the season of use (e.g., irrigation season).
  9. If there is insufficient water for the reasonable, beneficial use requirements of all riparian owners, they must share the available supply. Apportionment is governed by various factors, including each owner’s reasonable requirements and uses. In the absence of mutual agreement, recourse to a determination in the Superior Court may be necessary.
  10. The riparian diverter is subject to the doctrine of reasonable use, which limits the use of water to that quantity reasonably required for beneficial purposes. The method of diversion and conveyance must also be reasonable and non-wasteful.
  11. A diverter who possesses a valid riparian claim of right does NOT need to obtain a permit from the State Water Resources Control Board for the act of diverting water. However, any alteration made to a natural channel in order to divert the water will probably require acquisition of a “streambed alteration agreement” from the Department of Fish and Game and may require a Section 404 Permit from the Army Corps of Engineers or a waste discharge requirement from the appropriate Regional Water Quality Control Board. Compliance is also required with any other local, state, or federal requirements regarding construction and operation of the diversion facilities.
  12. Water Code section 5100, et seq. requires that a “Statement of Water Diversion and Use” be filed with the Division for any diversion under riparian right if no other entity reports this use. As of 2007, there is no charge to file this document and forms are available upon request from the Division of Water Rights.