Riparian Rules by Chuck Rich

An oldie but still the best summary of riparian rights that can fit on both sides of an 8-1/2″ x 11″ sheet of paper:

Riparian Rules by Chuck Rich, State Water Resources Control Board, 2007

GENERAL RULES GOVERNING THE EXISTENCE OF AND
USE OF WATER PURSUANT TO RIPARIAN CLAIMS OF RIGHT

  1. A riparian right exists by reason of ownership of land abutting upon a stream or body of water and affords no basis of right to use water upon nonriparian land.
  2. A parcel of land generally loses its riparian right when severed from the stream channel via a parcel split (i.e., “physical severance”) unless the right is specifically reserved for the severed parcel in the deed of transfer or other conveyance document. However, the California Supreme Court has held that where a physical severance has previously taken place, if the severed tract was receiving water from the creek at the same time the conveyance created the severance, that fact can be used in court to argue that the grantor and grantee did not intend any severance of riparian rights notwithstanding the physical severance, and the riparian right might be preserved as a result – if the court so decides. The riparian right also may be lost when transferred apart from the land by grant, contract, or condemnation. Once lost or severed, the riparian right can NEVER be restored.
  3. Riparian water right holders may only divert a share of the “natural streamflow” of water in the stream. “Natural streamflow” is the flow that occurs in a watercourse due to accretions from rainfall, snowmelt, springs and rising groundwater. To the extent that flow in its natural state reaches or flows through their property, riparian right holders have a proportional right, based on need, to the use of the natural flow.
  4. A riparian right does not allow diversion of water that is foreign to the stream source. Water that is: a) imported from another watershed; b) stored and subsequently released later in time into the stream system from upstream dams; or c) irrigation runoff generated from the application of percolating groundwater applied to upstream lands; is not available for diversion under a riparian claim of right.
  5. Water diverted under claim of riparian right may only be used on the parcel of land that abuts the stream – – unless the severed parcel’s riparian status has been somehow retained (see #2 above), and then only on that portion of the parcel that drains back into that portion of the stream from which the water was originally diverted.
  6. In order to divert water under claim of riparian right, the diverter must use the water on riparian land but need not own the land at the point of diversion. That is, the diversion may be made at a point upstream (or downstream) from the land being served so long as permission is granted to use that point of diversion and intervening land owners between the point of diversion and place of use are not adversely affected by such practice. However, water cannot be diverted upstream or downstream under a riparian claim of right if this water would not have reached the diverter’s land in the “natural” state of affairs. (In other words, the land is only riparian to the stream when the stream, in the natural state, would actually reach or touch the parcel in question.)
  7. Riparian rights are not lost by nonuse of the water.
  8. “Seasonal storage” of water cannot be accomplished under a riparian claim of right. “Seasonal storage” is generally defined as the collection of water during a period of excess flow for use during a period of deficient flow. However, water may be retained for strictly “regulatory” purposes. “Regulatory storage” of water means the direct diversion of water to a tank or reservoir in order that the water may be put to use shortly thereafter at a rate larger than the rate at which it could have been diverted continuously from its source. Regulatory ponds should generally be drained at the end of the season of use (e.g., irrigation season).
  9. If there is insufficient water for the reasonable, beneficial use requirements of all riparian owners, they must share the available supply. Apportionment is governed by various factors, including each owner’s reasonable requirements and uses. In the absence of mutual agreement, recourse to a determination in the Superior Court may be necessary.
  10. The riparian diverter is subject to the doctrine of reasonable use, which limits the use of water to that quantity reasonably required for beneficial purposes. The method of diversion and conveyance must also be reasonable and non-wasteful.
  11. A diverter who possesses a valid riparian claim of right does NOT need to obtain a permit from the State Water Resources Control Board for the act of diverting water. However, any alteration made to a natural channel in order to divert the water will probably require acquisition of a “streambed alteration agreement” from the Department of Fish and Game and may require a Section 404 Permit from the Army Corps of Engineers or a waste discharge requirement from the appropriate Regional Water Quality Control Board. Compliance is also required with any other local, state, or federal requirements regarding construction and operation of the diversion facilities.
  12. Water Code section 5100, et seq. requires that a “Statement of Water Diversion and Use” be filed with the Division for any diversion under riparian right if no other entity reports this use. As of 2007, there is no charge to file this document and forms are available upon request from the Division of Water Rights.
Advertisements

Do Something Wrong, Instead Of Nothing Right

Do something wrong, rather than nothing at all. Have you ever heard that before? I have heard it from Army veterans, a boss, even an elder of a church.  George Patton said, “A good plan violently executed now is better than a perfect plan executed next week.”  A non-military way to say that is, “A poor plan now is better than no plan at all.”

What it means to you and me is, if action is necessary, do something, maybe ANYthing, rather than freezing in place or ignoring a problem. This is obvious when you see a tornado 5 miles away, for example; either drive away from it if you are in a car, or take shelter if you are on foot. If you have a plumbing leak in the house and no parts to replace broken pipe, then put a bucket under it, or turn off the valve, and call a plumber. All of us have seen a TV show (or maybe had it happen to us) where the bad guy pointed a rifle and said, “Don’t move”. What do we all say to the TV? “Don’t just stand there, run!”. Doing nothing is a much worse choice, if the result for freezing in place is death or injury.

Ready-to-install 3-inch Montana Cutthroat Flume

What about water rights – how does doing something wrong help? Everyone knows by now that surface water diverters need measurement devices, so put in a weir box and boards and measure your flow before the threats come from the Water Board, your watermaster, your ditch tender, or your neighbor.  Even just stick horizontal boards in a ditch and seal the sides with plastic – something to take positive action to reduce future pain.

Remember to file the information for the measurement device with the Water Board, either via your annual report of diversions, or using the Water Right Form and Survey Submittal Portal.

Take a look at the blog posts below.  There is enough information and how-to directions, that you should be able to do it well enough to satisfy the Water Board.  Check out these posts:

There is a philosophy based in law and a lot of experience, that says don’t put any controls on yourself until the court or government makes

Temporary Weir In Ditch

you. Why remodel your house to accommodate the wiring or plumbing, if you aren’t selling the house and everything works okay right now? Who would put a lot of money into an old truck to make it pass smog, if it just might pass a smog check the next time it has to be done? What farmer would change how he irrigates or ranches if everything still operates and the bank will keep making operating loans?

All of the Water Board deadlines have passed to install measurement devices, or file Alternative Compliance Plans.  If you haven’t got your device or plan done yet, get a Request For Additional Time done as soon as possible.

Be proactive.  Take some inexpensive, temporary action.  Educate yourself for free with some time in the Internet. Even a small, less-than-perfect improvement in your measurement device, flow and water use record keeping, can pay back a lot more when you have to deal with potential Water Board fines, a court case, or even just an angry neighbor in the future.

Measure Any Flow With Watchman Flumes

How can large diversions be measured?  Long-throated flumes are a good option, especially if the ditch has low banks, or a lot of sediment or debris could clog a weir or orifice.  Premanufactured Parshall or Replogle flumes go up to around 20 cubic feet per second (9,000 gallons per minute).  If they are made for larger flows than that, they are prohibitively expensive to ship or manufacture.

Watchman 10 cfs flume

Recently, though, Watchman long-throated flumes have become available.  They are made in Northern California, so shipping costs are lower.  They typically go up to 20 cubic feet per second in size, but I have installed a 30-cfs Watchman flume.  The manufacturer can easily make larger-capacity flumes, too – standard plans go up to 60 cfs, and they can be shipped in ready-to-assemble sections for up to 200 cfs.

Watchman flumes are made of 10-gauge steel, a little thicker than 1/8 inch.  The premanufactured flumes I have seen ship from outside the state are made of 16-gauge steel, which is about 1/16″ thick.  These can work well if care is taken during installation, but the Watchman’s heavier gauge steel can withstand more backfill and rougher treatment.  They’ll last longer, too.

Watchman 20 cfs flume

What about cost?  It turns out that Watchman flumes are about the same cost per cubic foot per second, as flumes made from lighter-gauge steel.  Some farmers and ranchers like concrete better than steel.  Watchman flumes can be built inside Briggs pre-cast concrete rice boxes and weir boxes, if you need an installation to last for 30 years or more.

Where can you buy these?  The manufacturer does not advertise – let me know and I can put you in touch with them.

Is John Stealing Water?? Orifices And Sum Of The Boxes

This is updated from a previous post, which was an example for a stream with adjudicated water rights.  However, it also works for any stream where there are water rights with legally defined diversion quantities, if all the diverters have headgates in good condition and/or measurement devices such as weirs, flumes, and pipe meters.

Is John Stealing Water??  John Casey has a cattle ranch near Adin, where he grows pasture and hay to raise about 70 Angus steers.  His ranch is 240 acres with lower irrigated land and forest on the higher part.  He has an a licensed water right of 2.00 cubic feet per second (cfs) from Preacher Creek, to irrigate 80 acres, from April 1 to November 1.

John’s downstream neighbors claim he steals water.  He says he can show that he takes only 2 cfs, or less when the flow drops down in the summer.  Can he prove it?John_Headgate_edit

As we can see, he has a square headgate at the head of his ditch.  It is 2.0′ wide, and can open up to 1.5′ high.  Right now, John says he is diverting 1.05 cfs.  His evidence is that his gate is open 0.15′, the water is 0.57′ deep on the upstream side, and the water is 0.20′ deep on the downstream side.  Is that enough to check what he says?

The box in which the gate sits has smooth walls, and the gate closes flush with the bottom when John is not diverting.  The water continues in a straight path from upstream to downstream.  That means the weir has “suppressed” sides.

This is in contrast with, for example, a hole cut in the middle of a 2″ x 12″ weir board.  The water on the sides has to make the turn to go straight through, so the hole in the board is an example of a “contracted” orifice.

Let’s look at the tables for orifices in the back of the Water Measurement Manual.  Table A9-3 is for submerged, suppressed weirs.WMM_Table_A9-3_suppressed

We can’t see the downstream side of the weir, but the water is above the bottom of the edge of the gate, so it is submerged rather than free-flowing.

This table has flows calculated for a minimum area of 2.0 square feet (sq. ft.).  However, the area of the opening at John’s headgate is 2.0′ wide x 0.15′ high, or 0.30 sq. ft.  Fortunately, the equation, Q=0.70A(2g Δh)^0.5, is listed right at the top of the table.  We can calculate the flow using that.  Q is the flow in cfs, A is the area of the orifice hole, g = the acceleration due to gravity, or 32.2 ft/second^2 (feet per second squared), and Δh is the difference between the upstream and downstream water depth.

So the flow Q = 0.70 x (2.0′ x 0.30′) x (2 x 32.2 x 0.37′)^0.5 = 1.03 cfs.  So far so good – John is taking 52%, or just over half of his right when 100 percent of flows are available.  But, how much flow is actually available right now?

Let’s use the “sum of the boxes” method.  Instead of measuring the amount of water in Preacher Creek at the top, before any diversions, and then estimating how much flow is being lost to evaporation, transpiration, and infiltration, and then estimating how much flow is subsurface above John Casey’s ranch and “pops up” out of the ground below, we’ll look at what each diversion amount is, plus the amount still in the creek after the last diversion.  This is very useful because none of the instream losses have to be estimated – we just add the diversions and flow still in the creek, and that amount IS the available supply.

Water Board Permits and Licenses are usually not interrelated – they specify water rights without considering the other water rights on the stream.  This is different from adjudicated streams, whether done by the Water Board or the Department of Water Resources.  Some Superior Court judges in past decades were pretty smart and actually ordered that available flows be calculated by the sum of the boxes:

Susan_1_of_2_DecreeParaAvailWaterEqualsDiversionsSusan_2_of_2_DecreeParaAvailWaterEqualsDiversionsThe paragraph above, from the Susan River Decree, defines available water supply as what is being diverted, plus the flow passing the last diversion.

There are 4 diversions on Preacher Creek, and here are the amounts being diverted:

  • Diversion 1 (John Casey) 1.03 cfs  of a 1.60 cfs water right, 52% of his total right
  • Diversion 2 (Amy Hoss) 1.67 cfs  of a 3.80 cfs water right, 44% of her total right
  • Diversion 3 (Mark and Cindy Sample) 0.55 cfs  of a 0.88 cfs water right, 62% of their total right
  • Diversion 4 (Quint and Marcie Minks) 1.32 cfs  of a 2.50 cfs water right, 53% of his total right
  • Flow still in the creek past the Minks Diverison – Quint estimates about 0.7 cfs

The total diversion-plus-bypass flow is about 5.3 cfs.  The total rights on the creek are 9.48 cfs.  Therefore, the total available flow = 5.3 / 9.48 = 56%.

So, John is right, he is not stealing water!  He is taking 52% of his water right, when he could be taking 56% according to the “sum of the boxes” method.  Not only that, but Amy could take more, the Samples should reduce their diversion, and the Minks’s could take a tad more.  Well, that’s theoretical – Quint and Marcie Minks probably cannot seal up their dam completely, so there may be a little bit less flow actually available for diversion.

Data Loggers – Convenient…But Data Will Be Lost

The Water Board requires diversions and storage over 10 acre-feet per year to be recorded, per SB 88, other state laws, the California Water Code, and agency regulations.  Data must be recorded monthly, weekly, daily, or hourly, depending on the size of the diversion or reservoir:

But we don’t live in a perfect world.  Things will go wrong.  Whether you record data by hand in a notebook, or a data collector records data electronically, data will get lost.  Why not just use a notebook or phone camera?  That works when the data collection interval is monthly, and might work for weekly.

However, if diversions are over 100 AF or storage is over 200 AF per year, data must be collected daily, and diversion or storage of 1,000 AF per year or more requires hourly data collection.  That daily or hourly interval makes electronic data collectors of some kind a requirement to have the data and avoid those fines of possibly $500/day.

 

We’re all busy, so we have to make time to spend half a day or more downloading loggers 2 or 3 times each year.  The leaves the possibility of data loss between the times data is downloaded.  Why not download data once a month, or weekly?  That’s not doable for ranchers and farmers who are already spending long days just to try and make a profit.

At some point, data will be lost.  You could just use the last measured value for all the intervals that were lost, but in reality storage volumes change based on rainfall, evaporation, stock and wildlife use, and releases.  Diversions change based on available flows in the stream and changes in irrigation, stockwater, or other uses at the place of use.  Sometimes diversions are maxed out for a day or two for filling a ditch or flooding up, and other times they are shut off for haying or maintenance.

How will you tell the Water Board that data is lost, even though you did your level best to do everything rig

ht?  Perhaps data was downloaded in February, June, and October…but the fields for February 15 through June 10 are blank.

 

As always, if you are behind the 8-Ball, communicate early and often.  Jeff Yeazell is the public contact outside of the Delta, and Jeff is scrupulous about replying and hanging on to emails.  If you’re really worried, include someone else in an email.  Notice I said “email” and not “phone”.  Phone calls are a lot more work on the receiving end, and information can get lost more easily.

Of course, also take extraordinary steps to recover the data.  Maybe an expert can try a few things to get the data off the unit.  You might have to send it to the manufacturer and see if they can download it.

Be diligent, check setups twice and three times, save downloaded data in 2 places immediately after downloading, download as often as you can, and otherwise be diligent and careful.  In the end, though, data will be lost, but don’t panic.  Communicate early, often, completely, and repetitively.  Keep estimates or spot-check notes throughout the year, and use those to fill in gaps if you have to.

How To Survey A Reservoir

Pond In Mountains, Photo Credit: Pixabay
Pond In Mountains,  Credit: Pixabay

If you have a reservoir, the Water Board requires you to measure and report: how much you divert to it, how much water you store in it by month, and how much water you release if the pond has a controllable outlet.  It is usually not possible (or at least not feasible) to measure the inflow, so what is actually reported is the monthly positive change in storage, the amount that fills it up.

If your reservoir is less than 10 acre-feet (AF) per year, you only have to report it.  Measurement is not required.

How do you know how much is stored in your reservoir?  Each pond needs an elevation-storage table or curve, as the Water Board calls it.  Engineers call it an area-capacity table or curve – that’s what I created during part of my career as a water bureaucrat.  I’ll use the Water Board’s terminology here since water diversions and storage are reported to them.

First check to see if the Water Board or Division of Safety of Dams has an inspection report for your reservoir.  If not that, then an elevation-storage table or curve may be available.  You can have it emailed as a PDF.  If there is no information for your reservoir, then you have to create the table and curve yourself.

First a reservoir has to be surveyed, so you know how full it is for any given elevation of water.  The elevations start at zero storage.  The figure below shows a cross section and the contour map for a reservoir with a minimum elevation of 86 feet.

Pond Contours. Photo Credit: civilblog.org
          Pond Contours,  Credit: civilblog.org

How do you survey a reservoir?  You could hire an engineer or surveyor to survey it.  Depending on your budget and your need for accuracy, the elevation-storage table from a survey could be anywhere from +/- 5%, to +/- 10% accurate.  The Water Board requires +/- 10% for larger reservoirs, and +/- 15% for 100 acre-foot (AF) or smaller reservoirs.  I recommend aiming for +/- 5% in case you have significant errors elsewhere in the measurement system.

On the high end, the survey could be done using GPS survey instruments, so the result could be accurate and could overlay other digital maps.  Almost as high a cost is to have a transit with EDM (electronic distance measurement).  Robotic units only require one person acting as the rodman, and the instrument “follows” by keeping pointed at the laser prism reflector.

At the bottom end of the scale, a survey level or possibly a hand level, and a couple of 100′, 200′, or 300′ tapes can be used.  Many survey levels can read horizontal angles within a degree or two, so the instrument person can note angle and distance to every point.  If angles are not used, then two tapes are used, one to measure the distance along a side, the other to measure perpendiculars out to the rodman.  In the boat, the rodman measures depths, and on land he has a telescoping level rod to get elevations above the Photo_0188water level.  This way you measure X and Y distances that are plotted on a grid along with each point’s elevation or depth.

With plotted points, now you can draw contours for every foot, or every two feet, or every five feet, depending on the size of your reservoir.  Then calculate the area for each contour, and the volume between each set of contours.

Here’s where Google Earth can be your best friend.  Navigate to your property and reservoir in Google Earth.  Then take a digital photo of your contour map, and import it into Google Earth as an image overlay.  Make it 50 percent transparent, and move and resize the image until it fits over your reservoir.  Now you can use the polygon tool, trace over your contours, and let Google Earth calculate the areas for you!  Make sure to get those areas in square feet or acres and not square miles.

An alternative way of doing this is to print out a map of your reservoir from Google Earth, then draw your survey points and contours right on that map.  Then when you import the scanned or photographed, edited map, it will be a lot easier to overlay on your reservoir.

Make an elevation-storage table and draw an elevation-storage curve like the one below.

Let’s look at an example.  To get the reservoir volume, add the areas of two adjacent contours, say, the 90-foot contour and the 92-foot contour, divide by 2, then multiply by the elevation difference (in this case, 2 feet).  If the 90-foot contour has an area of 6.1 acres, and the 92-foot contour has an area of 7.6 acres, the calculation is [(6.1 + 7.6)  / 2] * 2 = 13.7 AF.

190-AF Reservoir Capacity Chart

Here’s the great thing about simple methods: anyone can measure his own reservoir by reading up on it first (Google, Bing, or DuckDuckGo) and then taking some care (and good notes) to do the job well.  If the topography is difficult, or the pond is too large for tapes, or you are just too busy doing the work you have to get done, then talk with an engineer and negotiate cost vs. quality and accuracy.

Great AB 589 Self-Certification Training!

I attended the Flow Measurement Devices and Methods course in Cottonwood yesterday, for diverters to become a “qualified individual” per AB 589.  What a great class!  All my appreciation and applause to Larry Forero, Allan Fulton, and Khaled Bali of the UC Division of Agriculture and Natural Resources, who taught the course.  They laid out the requirements and the details of several ways to comply with SB 88, including weirs, flumes, water level loggers (pressure transducers with data collectors), in-line meters, in-line differential pressure, how to determine and track reservoir volume, and how to report changes in volume.

There were specific examples of how to size a weir to install the correct device, how to convert measured flow rates to the volumes that must be reported to the Water Board, and how to select an inline meter if your diversion is piped.  There were detailed examples of how to comply with the Water Board’s reporting requirements, and discussion of the most relevant parts of SB 88.

I hope that Larry and Allan will make their Powerpoint presentation available online for public use.  It is well done and really helps understand how to comply with SB 88, both in the field and online at the Water Board.

Update:  Allan Fulton contacted me and let me know that this course IS accepted by the Water Board!  So sign up, take the 3-4 hour course, and you will be certified to install your own measurement device(s).

I heard a week ago that it isn’t a 100 percent lock that completion of the course will be accepted by the Water Board.  However, the course is more than adequate in my estimation, and I don’t think the Water Board has any alternatives to comply with AB 589.  It is going to be accepted!

AB 589 says, in part:

“…any diverter who has completed an instructional course regarding the devices or measurement method included in the course administered by the University of California Cooperative Extension, including passage of a proficiency test before the completion of the course, shall be considered a qualified individual when installing and maintaining devices or implementing methods of measurement that were taught in the course for the diverter’s diversion.”

Thanks to the Shasta Livestock Auction Yard for providing the location – my guess is that there were 140 people attending, a good crowd for this narrow subject.  The Cattlemen’s Association got the word out and provided refreshments.  It was hundreds of hours of work among 8 people or so to pull this off.  Job well done, everyone!