Installing Reservoir Staff Gages

How is a staff gage installed in a reservoir?  The typical way is to drive a piece of 2″ galvanized pipe into the ground, deep enough to so it isn’t easy to push over.  If cattle will be in the reservoir to get water, then the pipe needs to be really well installed.  A gas-powered post pounder can be rented at Rental Guys, Home Depot, or similar places.

Most reservoirs are deeper than six feet, so it’s best to maximize the length of pipe installed.  The length of pipe that can be installed by hand is usually about 6 feet.  For a 6-foot tall pipe, about 3 feet of pipe needs to be in the ground, so the total pipe length is 9 feet.

Then the staff gage is attached to a 2″ x 8″, using screws or small bolts.  Staff gages vary in width from 1″ to 4″; the usual USGS Style C staff gages are 2-1/2″ wide.  Once the staff gage is screwed on, the board is U-bolted to the pipe.

That’s it…except for the surveying part.  The top of staff gage needs to be at the same level as the spillway crest, so the maximum water surface elevation can be measured.

If the reservoir is deeper than 6 feet, and most are, then staged staff gages may be needed.  The first gage is installed at the top, going from, say, 6 feet to 12 feet.  The second, lower staff gage is installed from 0 feet to 6 feet, and 6 feet is exactly the same elevation on both staff gages.  In the photo below, there are 3 staged staff gages to measure 18 feet in elevation.  The top of the third, lowest staff gage can be seen in the bottom right corner.

What if a pond is full, or mostly full?  It is still possible to install a staff gage, but it will be harder.  Boats or rafts will be needed, and the pipe with the board already attached has to be put in place and held vertical while being driven.  If the total depth is greater than 6 feet, then a longer pipe, board, and staff gage will be needed, and the combined weight will be that much greater.  Hint: tie a rope and buoy to the pipe so when if it slips and sinks, it can be pulled up again.

What about installing a staff gage along the slope of a dam, to avoid having to wrestle a pipe and board for a deep installation?  This can be done by attaching a length of rebar or pipe to the dam face using concrete stakes or similar method.  The slope distances measured are converted to vertical depths.  However, this won’t stand up well to cattle or elk traffic, and it is more liable to be vandalized if the reservoir has easy access.

Advertisements

Option For Pipe Flow – Seametrics Paddlewheel Meters

How do you measure flow in a pipeline?  The simplest

McCrometer Magnetic Meter

way is integrated, saddle-mounted propeller or magnetic meters.  For example, see the post on McCrometer magnetic flow meters:  https://allwaterrights.com/tag/inline-magnetic-flow-meter/.  Propeller meters look much the same.  Both mount through a hole cut in the pipeline, making them quick to install, and easy to remove for maintenance.  These meters can handle some sediment and still be accurate, although water with a lot of silt and sand wears out propellers faster. 

McCrometer Propeller Meter
Installing Propeller Meter

 

 

What about cost?  For integrated meters, the costs start at about $3,200 delivered, and go up with diameter.

If you want to spend the least amount of money and still have accurate flow

DL76W Wall-Mount Data Collector

measurement, a paddlewheel meter may be a good solution.  These can be integrated, or can be assembled from the meter, data collector,

IP800 Paddlewheel Meter

display, and possibly other parts.

 

For an idea of the cost, an IP 800 paddlewheel meter, FT450 display, and DL76 data collector for a small pipeline cost about $2,000 delivered. 

FT450 Data Display

That is about $1,200 cheaper than a magnetic meter for the same-sized pipeline.

 

So, why not always use a paddlewheel meter rather than more expensive magnetic or propeller meters?  Paddlewheels wear out faster if there is sediment in the pipeline.  I have seen installations where pumping from a muddy river wore out a paddlewheel

Saddle for Paddlewheel Meter

in a year, but a propeller meter lasted 3 years pumping from the same river before needing refurbishment.  The shaft and wheel can be replaced in the field, at a lower cost than propeller or magnetic meter refurbishment.  However, busy farmers and ranchers don’t have time to check the paddlewheel once or twice a year, so the meter installation is at a greater risk of losing data than a propeller or magnetic meter.

Paddlewheel Meter in Saddle

If you are brave or experienced enough, you could get a paddlewheel integrated with the data collector, and no external display.  This would get your delivered cost down to about $1,500.  Data needs to be downloaded more often, perhaps every 2 to 3 months, to ensure the meter is working correctly.  Also, the meter needs to be installed from the side, not the top, so more clearance is required to the side.

DL76 Data Collector Mounted on Paddlewheel Meter

Do Something Wrong, Instead Of Nothing Right

Do something wrong, rather than nothing at all. Have you ever heard that before? I have heard it from Army veterans, a boss, even an elder of a church.  George Patton said, “A good plan violently executed now is better than a perfect plan executed next week.”  A non-military way to say that is, “A poor plan now is better than no plan at all.”

What it means to you and me is, if action is necessary, do something, maybe ANYthing, rather than freezing in place or ignoring a problem. This is obvious when you see a tornado 5 miles away, for example; either drive away from it if you are in a car, or take shelter if you are on foot. If you have a plumbing leak in the house and no parts to replace broken pipe, then put a bucket under it, or turn off the valve, and call a plumber. All of us have seen a TV show (or maybe had it happen to us) where the bad guy pointed a rifle and said, “Don’t move”. What do we all say to the TV? “Don’t just stand there, run!”. Doing nothing is a much worse choice, if the result for freezing in place is death or injury.

Ready-to-install 3-inch Montana Cutthroat Flume

What about water rights – how does doing something wrong help? Everyone knows by now that surface water diverters need measurement devices, so put in a weir box and boards and measure your flow before the threats come from the Water Board, your watermaster, your ditch tender, or your neighbor.  Even just stick horizontal boards in a ditch and seal the sides with plastic – something to take positive action to reduce future pain.

Remember to file the information for the measurement device with the Water Board, either via your annual report of diversions, or using the Water Right Form and Survey Submittal Portal.

Take a look at the blog posts below.  There is enough information and how-to directions, that you should be able to do it well enough to satisfy the Water Board.  Check out these posts:

There is a philosophy based in law and a lot of experience, that says don’t put any controls on yourself until the court or government makes

Temporary Weir In Ditch

you. Why remodel your house to accommodate the wiring or plumbing, if you aren’t selling the house and everything works okay right now? Who would put a lot of money into an old truck to make it pass smog, if it just might pass a smog check the next time it has to be done? What farmer would change how he irrigates or ranches if everything still operates and the bank will keep making operating loans?

All of the Water Board deadlines have passed to install measurement devices, or file Alternative Compliance Plans.  If you haven’t got your device or plan done yet, get a Request For Additional Time done as soon as possible.

Be proactive.  Take some inexpensive, temporary action.  Educate yourself for free with some time in the Internet. Even a small, less-than-perfect improvement in your measurement device, flow and water use record keeping, can pay back a lot more when you have to deal with potential Water Board fines, a court case, or even just an angry neighbor in the future.

Measure Any Flow With Watchman Flumes

How can large diversions be measured?  Long-throated flumes are a good option, especially if the ditch has low banks, or a lot of sediment or debris could clog a weir or orifice.  Premanufactured Parshall or Replogle flumes go up to around 20 cubic feet per second (9,000 gallons per minute).  If they are made for larger flows than that, they are prohibitively expensive to ship or manufacture.

Watchman 10 cfs flume

Recently, though, Watchman long-throated flumes have become available.  They are made in Northern California, so shipping costs are lower.  They typically go up to 20 cubic feet per second in size, but I have installed a 30-cfs Watchman flume.  The manufacturer can easily make larger-capacity flumes, too – standard plans go up to 60 cfs, and they can be shipped in ready-to-assemble sections for up to 200 cfs.

Watchman flumes are made of 10-gauge steel, a little thicker than 1/8 inch.  The premanufactured flumes I have seen ship from outside the state are made of 16-gauge steel, which is about 1/16″ thick.  These can work well if care is taken during installation, but the Watchman’s heavier gauge steel can withstand more backfill and rougher treatment.  They’ll last longer, too.

Watchman 20 cfs flume

What about cost?  It turns out that Watchman flumes are about the same cost per cubic foot per second, as flumes made from lighter-gauge steel.  Some farmers and ranchers like concrete better than steel.  Watchman flumes can be built inside Briggs pre-cast concrete rice boxes and weir boxes, if you need an installation to last for 30 years or more.

Where can you buy these?  The manufacturer does not advertise – let me know and I can put you in touch with them.

Is John Stealing Water?? Orifices And Sum Of The Boxes

This is updated from a previous post, which was an example for a stream with adjudicated water rights.  However, it also works for any stream where there are water rights with legally defined diversion quantities, if all the diverters have headgates in good condition and/or measurement devices such as weirs, flumes, and pipe meters.

Is John Stealing Water??  John Casey has a cattle ranch near Adin, where he grows pasture and hay to raise about 70 Angus steers.  His ranch is 240 acres with lower irrigated land and forest on the higher part.  He has an a licensed water right of 2.00 cubic feet per second (cfs) from Preacher Creek, to irrigate 80 acres, from April 1 to November 1.

John’s downstream neighbors claim he steals water.  He says he can show that he takes only 2 cfs, or less when the flow drops down in the summer.  Can he prove it?John_Headgate_edit

As we can see, he has a square headgate at the head of his ditch.  It is 2.0′ wide, and can open up to 1.5′ high.  Right now, John says he is diverting 1.05 cfs.  His evidence is that his gate is open 0.15′, the water is 0.57′ deep on the upstream side, and the water is 0.20′ deep on the downstream side.  Is that enough to check what he says?

The box in which the gate sits has smooth walls, and the gate closes flush with the bottom when John is not diverting.  The water continues in a straight path from upstream to downstream.  That means the weir has “suppressed” sides.

This is in contrast with, for example, a hole cut in the middle of a 2″ x 12″ weir board.  The water on the sides has to make the turn to go straight through, so the hole in the board is an example of a “contracted” orifice.

Let’s look at the tables for orifices in the back of the Water Measurement Manual.  Table A9-3 is for submerged, suppressed weirs.WMM_Table_A9-3_suppressed

We can’t see the downstream side of the weir, but the water is above the bottom of the edge of the gate, so it is submerged rather than free-flowing.

This table has flows calculated for a minimum area of 2.0 square feet (sq. ft.).  However, the area of the opening at John’s headgate is 2.0′ wide x 0.15′ high, or 0.30 sq. ft.  Fortunately, the equation, Q=0.70A(2g Δh)^0.5, is listed right at the top of the table.  We can calculate the flow using that.  Q is the flow in cfs, A is the area of the orifice hole, g = the acceleration due to gravity, or 32.2 ft/second^2 (feet per second squared), and Δh is the difference between the upstream and downstream water depth.

So the flow Q = 0.70 x (2.0′ x 0.30′) x (2 x 32.2 x 0.37′)^0.5 = 1.03 cfs.  So far so good – John is taking 52%, or just over half of his right when 100 percent of flows are available.  But, how much flow is actually available right now?

Let’s use the “sum of the boxes” method.  Instead of measuring the amount of water in Preacher Creek at the top, before any diversions, and then estimating how much flow is being lost to evaporation, transpiration, and infiltration, and then estimating how much flow is subsurface above John Casey’s ranch and “pops up” out of the ground below, we’ll look at what each diversion amount is, plus the amount still in the creek after the last diversion.  This is very useful because none of the instream losses have to be estimated – we just add the diversions and flow still in the creek, and that amount IS the available supply.

Water Board Permits and Licenses are usually not interrelated – they specify water rights without considering the other water rights on the stream.  This is different from adjudicated streams, whether done by the Water Board or the Department of Water Resources.  Some Superior Court judges in past decades were pretty smart and actually ordered that available flows be calculated by the sum of the boxes:

Susan_1_of_2_DecreeParaAvailWaterEqualsDiversionsSusan_2_of_2_DecreeParaAvailWaterEqualsDiversionsThe paragraph above, from the Susan River Decree, defines available water supply as what is being diverted, plus the flow passing the last diversion.

There are 4 diversions on Preacher Creek, and here are the amounts being diverted:

  • Diversion 1 (John Casey) 1.03 cfs  of a 1.60 cfs water right, 52% of his total right
  • Diversion 2 (Amy Hoss) 1.67 cfs  of a 3.80 cfs water right, 44% of her total right
  • Diversion 3 (Mark and Cindy Sample) 0.55 cfs  of a 0.88 cfs water right, 62% of their total right
  • Diversion 4 (Quint and Marcie Minks) 1.32 cfs  of a 2.50 cfs water right, 53% of his total right
  • Flow still in the creek past the Minks Diverison – Quint estimates about 0.7 cfs

The total diversion-plus-bypass flow is about 5.3 cfs.  The total rights on the creek are 9.48 cfs.  Therefore, the total available flow = 5.3 / 9.48 = 56%.

So, John is right, he is not stealing water!  He is taking 52% of his water right, when he could be taking 56% according to the “sum of the boxes” method.  Not only that, but Amy could take more, the Samples should reduce their diversion, and the Minks’s could take a tad more.  Well, that’s theoretical – Quint and Marcie Minks probably cannot seal up their dam completely, so there may be a little bit less flow actually available for diversion.

File Logger And Meter Data In 2019, With Annual Reports

Diverters and reservoir owners have been wondering, when is water level logger or meter data supposed to be filed with the Water Board?  I checked with Jeff Yeazell, our public contact at the Water Board.  Folks will be able to file data with their annual reports in 2019, so you’ll do it while you are already in the Report Management System to file your Reports of Licensee (due April 1) or Supplemental Statements (due July 1).  The new forms will likely be available in January of 2019.

Jeff is a great guy, knowledgeable, very responsive, and easy to talk with, so you can be reassured you’ll get a response and most likely an answer if you contact him.  His email is Jeffrey.Yeazell@waterboards.ca.gov and you can call him at (916) 341-5322.

https://public.waterboards.ca.gov/WRInfo/ :

Data Loggers – Convenient…But Data Will Be Lost

The Water Board requires diversions and storage over 10 acre-feet per year to be recorded, per SB 88, other state laws, the California Water Code, and agency regulations.  Data must be recorded monthly, weekly, daily, or hourly, depending on the size of the diversion or reservoir:

But we don’t live in a perfect world.  Things will go wrong.  Whether you record data by hand in a notebook, or a data collector records data electronically, data will get lost.  Why not just use a notebook or phone camera?  That works when the data collection interval is monthly, and might work for weekly.

However, if diversions are over 100 AF or storage is over 200 AF per year, data must be collected daily, and diversion or storage of 1,000 AF per year or more requires hourly data collection.  That daily or hourly interval makes electronic data collectors of some kind a requirement to have the data and avoid those fines of possibly $500/day.

 

We’re all busy, so we have to make time to spend half a day or more downloading loggers 2 or 3 times each year.  The leaves the possibility of data loss between the times data is downloaded.  Why not download data once a month, or weekly?  That’s not doable for ranchers and farmers who are already spending long days just to try and make a profit.

At some point, data will be lost.  You could just use the last measured value for all the intervals that were lost, but in reality storage volumes change based on rainfall, evaporation, stock and wildlife use, and releases.  Diversions change based on available flows in the stream and changes in irrigation, stockwater, or other uses at the place of use.  Sometimes diversions are maxed out for a day or two for filling a ditch or flooding up, and other times they are shut off for haying or maintenance.

How will you tell the Water Board that data is lost, even though you did your level best to do everything rig

ht?  Perhaps data was downloaded in February, June, and October…but the fields for February 15 through June 10 are blank.

 

As always, if you are behind the 8-Ball, communicate early and often.  Jeff Yeazell is the public contact outside of the Delta, and Jeff is scrupulous about replying and hanging on to emails.  If you’re really worried, include someone else in an email.  Notice I said “email” and not “phone”.  Phone calls are a lot more work on the receiving end, and information can get lost more easily.

Of course, also take extraordinary steps to recover the data.  Maybe an expert can try a few things to get the data off the unit.  You might have to send it to the manufacturer and see if they can download it.

Be diligent, check setups twice and three times, save downloaded data in 2 places immediately after downloading, download as often as you can, and otherwise be diligent and careful.  In the end, though, data will be lost, but don’t panic.  Communicate early, often, completely, and repetitively.  Keep estimates or spot-check notes throughout the year, and use those to fill in gaps if you have to.