How to Divide Up a Decreed Water Right

Back in 2005, Arnold and Eileen Williamson bought property near South Cow Creek in Shasta County.  They live in San Bernardino and plan to retire early, and build a new house on their land.  The parcel is part of an old ranch just off Highway 44.

The Williamsons paid $220,000 for the 3.55 acre lot.  That seemed high compared to similar parcels in the area, but they were assured the land has adjudicated water rights from South Cow Creek.

Arnold and Eileen brought their travel trailer to live on the land while they are building a new house.  Their savings account is in good shape so they are going to build a nice 2,200 square foot, single story ranch house with a garage and a shop.  They talked to a well driller 10 years ago and he assured them it would be easy to put in a well, for a cost of around $18,000.Williamson_Overview

When Arnold and Eileen went to get a permit to drill a well, they ran into unexpected problems.  Parcels on either side have their septic systems close to the common property lines, so their possible well locations are few.  Maybe a bigger issue is the passage of the Sustainable Groundwater Management Act in 2014.  Will their pumping rate be limited, and will their well-drilling permit application get held up?

Now the Williamsons are checking into their surface water right.  Is it enough for some pasture for horses and a few cows, in addition to the house and garden?  The Turings who live on the east side say there are no water rights.  The Poulans, to the west, say they have lived here for 6 years and they have never had water – they think the water right was bought off the place, or lost because of non-use.Williamsons_and_neighbors  Now the Williamsons are upset and headed toward just plain mad.  The real estate agent said they had rights, and didn’t the title companies insure it??  After a few frantic calls, they found out that title companies don’t insure water rights.  But, their realtor gave them the number of some folks over on the north side of the highway, and they have a “decree map”.  Arnold and Eileen head over to the Winters’ place to look over the maps.  Brad and Jenny Winters even have a web address where the decree and maps can be downloaded:  The Water Board’s web page has the decree, but no maps:


It turns out that the Cow Creek adjudication does not have maps, but an engineering report done a few years before the decree was issued does have the maps.  Brad and Jenny have that report, too, so they have Sheets 1 through 5 showing the “Diversions And Irrigated Lands” on Cow Creek.  Besides that, they have the link to where they can get the South Cow Creek decree, and a link to a blog that has the maps not on the Water Board’s web site:  Sheet 5 covers the area including the Winters and Williamson places.  Sheet 5 has a lot of “irrigated lands”Leggett_Focus_Area according to the legend – the green areas.

By looking at the maps, and their Assessor Parcel Map they have in their escrow package, it sure looks like their property is completely within the green area.  Great!  Now, how do they figure out if they actually have a water right?

Arnold and Eileen wonder, can they figure this out themselves?  Brad and Jenny tell them, they sure can, and there is a document online that explains how to do it:  They take a look at it and see that, yes, the document fully explains the process, but it requires having either AutoCAD or GIS software.  Also, it will take deep familiarity with the decree – and it is starting to look like a 3-day job just to understand it enough for their parcel!  Arnold and Eileen don’t have the software or experience, so they decide it’s not worth their time to learn this…and they are not sure if they can do it right.

AP_Map_59-98_croppedAfter asking around, Arnold and Eileen figure out they will need to see an attorney.  They call around and find out there are a couple of engineering companies that can see them faster, and they might cost less.  They picked Rights To Water Engineering to help figure out their water rights.  Within a couple of weeks, they have a nice report in their hands and answers to their questions.  So what did they find out?  The map below is one of several from the report they got from the engineer, showing their property boundary on the 1965 decree map of irrigated lands:Ex_2_Williamson_Parcel_Outline_on_DecreeMap_reduced

The report cost $1,500.  The engineer warns them that if it gets contentious and they can’t work out access to the water with their neighbors, they may end up having to get legal help.  He recommends a couple of local water rights attorneys if it comes to that – there are some good lawyers who specialize in in water rights.  For now, though, they have documentation they can discuss with their neighbors to work on getting their water right to their property.

Their property is on land that back in 1968 belonged to Howard and Gladys Leggett.  It has an adjudicated second priority water right for irrigation equal to 0.063 cubic feet per second, or 28.5 gallons per minute, 24 hours a day, 7 days a week, from March through October.   This 2nd priority right is less than the second and third priorities on the upper creek and tributaries, but it is the highest irrigation priority on the lower creek.  Back when the property was flooded, that was usually enough to flood irrigate their entire lot to grow pasture or hay.  That’s great news!

As natural flows drop during the summer that amount is reduced and everyone with a lower creek second priority has to reduce their diversion by the same percentage.  In normal and wet years they could keep their pasture, hay, or whatever else they plant, irrigated for most or all of the irrigation season.  And whether or not they use the water, the right does stay with the land and protect their property value; there is no provision for the expiration of water rights in the decree (the same as for nearly all surface water rights decrees).

What else was in their report?  There was a cover letter, and next some excerpts from the decree.  Schedule 1 lists the places of use for all the original owners.  The Leggetts’ description takes up most of page 60; the Williamson’s property is on the 69.8 acres listed in the second paragraph for the Leggett land:



Schedule 2 lists all the points of diversion, whether gravity diversions or pumps.  The Leggett property actually could get water from two diversions, a pump from the creek, and a proposed second, movable diversion on the creek.  That’s convenient – per the decree they could already divert their water from someone else’s existing diversion, or pump their water from Diversion 95, or they could get it from anywhere they can get agreement from the landowner!SCow_Sched2_Leggett_Points_Of_Diversion


Schedule 6 lists the water rights for Lower Cow Creek – other schedules have rights for the upper creek and tributaries.  This is interesting: there are four priorities of rights and this part of the Leggetts’ property has


 a 1st and a 2nd priority right.  What does that mean exactly?  The decree explains that 1st priority rights are domestic – houses and gardens.  It’s a very small right and it is not clear whether or how it should be divided up among the all the subdivided parcels that used to be the Leggett ranch.  The engineer noted it in the cover letter.

How was the water right calculated for the Williamsons?  Using a geographic information system, or GIS, the engineer used his training and years of experience to precisely overlay the Assessor Parcel Map on the decree map.  Then he measured the acreage for both, and prorated the water right by area.  The following screenshots of the Excel spreadsheet shows these calculations.




Time to fess up: this was a water right subdivision of a fictitious, made-up parcel of land, and the Williamsons don’t actually own it.  However, this story is one that happens every day, when a landowner asks “How much is my water right, really?  Can I divert for hay, stock, pasture, wildlife habitat, crops not mentioned in the decree, an orchard, ……… ?”  Having information before arguing with neighbors, seeing attorneys, sending legal letters, and going to court, can help smart people who generally have good relationships work out happy and agreeable solutions.  The Williamsons were smart and talked politely with their neighbors, the Turings and Poulens and Winters’s.  Now they have a good basis to live peacefully in their neighborhood for many years, and Arnold can borrow Charlie’s lawnmower until he gets his own.



Water Management (Sharing Shortages) In California In the Short and Long Term, Part 2

Continuing from Part 1, why would a groundwater shortage in San Diego affect how much a surface water diverter in Modoc County could use…rather, how much the diverter has to reduce his use?  Where does all groundwateWatercyclesummaryr come from?  Surface water flowing in streams, accumulating in meadows, ponds, and lakes replenishes groundwater, whether it takes a year, 3 years, or 20 years.
Rainfall infiltrates (soaks in) until the soil has no more capacity, and then runs off.  Groundwater is directly connected to, and depends on the amount of surface water.

In 2009, just 7 years ago, the California Legislature passed and the Governor signed Senate Bills 1, 6, 7, and 8.  These new laws required:

In 2013, 4 short years later, the Sustainable Groundwater Management Act passed.  This is a gigantic change in state groundwater laws – 515 groundwater basins in California are now prioritized based on overdraft, increased groundwater pumping, and falling groundwater levels; or conversely, the health of groundwater basins – some are hardly even touched.  On this map, now everybody can see what was neCASGEM_BasinPrioritization_Statewidearly invisible 2 years ago – the state of our groundwater basins.

About 2/3 of California’s water falls in the northern 1/3 of the State.  However, most of the good agricultural land, as well as most of its population, is in that drier 2/3 of the State.

Back to San Diego potentially affecting how much water can be diverted in Modoc County…does San Diego even have a groundwater basin?  Yes it does, along the Sweetwater River.  Of course this isn’t hydrologically connected to drainage from the Pit River in Modoc County; the Pit River ultimately eCASGEM_BasinPrioritization_SanDiegonters the Pacific Ocean in the Sacramento River-San Joaquin River Delta, and the Sweetwater enters the ocean on the shores of the City of San Diego.

Think about it:  7 short years ago, groundwater was mostly a mystery to 90% of folks, and surface water management was hardly “integrated”, except for the federal Central Valley Project (CVP), State Water Project (SWP), and some relatively small projects.  20 years from now?  Heck, that’s 2036; I’ll bet that, just continuing the –> trajectory –> of legislation that started in 2009, by 2030 (14 years from now), surface water and groundwater will be so connected and co-managed, that shortages in San Diego will require diversions to be reduced from where the water is in those northernmost Counties contributing to the Sacramento River drainage:  Siskiyou, Modoc, Shasta, part of Lassen, Tehama, Glenn, Butte, and Plumas.  I put in print so we can check my prognostications down the road.  You heard it here first!

Maybe that sounds paranoid or protective.  It’s not, I would think the same whether I lived in Crescent City, San Francisco, Susanville, Oroville, Bakersfield, or San Dimas.  After all, who would have thought in 2007 or 2008, that we would be integrating surface water use, looking at groundwater maps in syndicated newspapers, hearing of possible  fines of $25,000 for misreporting surface water diversion in the middle of nowhere…?

That’s all for now, by the end of the week we’ll be back to discussing the many aspects of the diversion of surface water.  Have a good night, everybody.

Coming to a Diversion Near You – Water Board’s 2017 Measuring, Reporting Requirements

Continuing our discussion from a previous post,, surface water diverters must have some kind of measurement system, and must report diversions more frequently.  The Water Board posted a fact sheet online that summarizes the emergency regulations:  SENATE BILL 88 AND EMERGENCY REGULATION FORMEASURING AND REPORTING ON THE DIVERSION OF WATER

Many diverters, particularly those who report less than 100 acre-feet (AF) per year, can find enough information in this blog to successfully install their own measurement devices.  100 AF per year is equivalent to a year-round, 24-7 diversion of 0.140 cubic feet per second (cfs).  If the diverter only uses water during the irrigation season, the equivalent rate is higher.  For example, a diversion for 90 days is only 1/4 of a year, so the rate is proportionately 4 times greater:  0.560 cfs.

What are some of the other regulations?  Here are a few from the January 8 version, which still has the edits shown.  The first is that diverters must “immediately” report changes in name, address, or ownership.  Sometimes, buyers of property don’t even know they have a permit or license!  Not immediately reporting something a buyer is not even aware of, puts the new owner in legal trouble:20160108_prop_regs_S_915-916

There are changes in the regs which we have already discussed, in measurement devices, reporting frequency, and who is legally qualified to install measurement devices:















More on the regulations later, including additional information about how to comply with the law, stay out of trouble, and protect your right to divert water

Diverters must report weekly, daily, or HOURLY starting 2017!


So on Tuesday, January 20, “The State Water Resources Control Board (State Water Board) adopted regulations Tuesday evening requiring all surface water right holders and claimants to report their diversions. Those who divert more than 10 acre-feet of water per year must also measure their diversions.”  Click the logo above to see the 2-page document on the Board’s website.

Well, how bad can it be?  Before January 20, most diverters had to report monthly diversions, so 12 volumes per year, plus the annual total.  That’s 13 numbers.  The required frequency a year from now will be increased quite a bit, to weekly, or daily, or hourly:

For instance, large diverters with a claimed right to take 1,000 acre feet of water or more per year are required to have a measuring device or measuring method capable of recording at least hourly in place by Jan. 1, 2017; those with claimed rights to divert 100 acre feet or more must comply by July 1, 2017 and record at least daily; and those with claimed rights to divert more than 10 acre feet must comply by Jan. 1, 2018 and record at least weekly.

How can flows even be reported hourly?  See the end of this post.  What if someone decides to skip reporting, and let the Board catch up with them later?  The FINES can be large enough to hurt – we’ll discuss this in a later post.

At the minimum reporting requirement of weekly, the volume is 10 acre feet (AF) to 100 AF.  What is 10 AF in terms of a seasonal agricultural diversion?  All the flows shown below are year-round; if the diversion only runs seasonally, the actual water right might be 2 to 10 times the calculated amount, depending on how long the season is and when the stream dries up.

10 AF  =  0.014 cubic feet per second (cfs) year-round, or 6.2 gallons per minute (gpm).  That’s a domestic right, enough for a family house, garden, and perhaps 15 trees or a yard.

100 AF = 0.140 cfs, or 62 gpm year-round.  Depending on soil, this is enough for 3 to 15 acres of pasture or hay, maybe 15 cows or steers, or maybe 30 acres of a mature walnut orchard with micro-sprinklers.  This is enough for a little extra money, still not enough to support a family.About_1.4_cfs_over_weir_edited_2_small

1,000 AF = 1.40 cfs or 620 gpm year-round.  This is enough for 30 to 150 acres of pasture or hay, or maybe 300 acres of orchard.  Water in this quantity could support a family and would be considered a ranch or farm.  The 4′ weir above has about 1.4 cfs going over it.  As mentioned above, if this diversion only runs 6 months of the year, and really only gets the full flow for 3 months, then the actual continuous water right might be 5 cfs.  It might be easier to reverse the thinking: a 5 cfs right might run at 5 cfs for 3 months,  3 cfs for a month, 2 cfs for 2 months, and be off the rest of the year.  That’s closer to a 2 cfs right year-round, or about 1,400 AF per year.

How is flow measured HOURLY?  The only practical ways to do this used to be an old mechanical recorder, like a Stevens F Recorder (pen on paper on rotating drum) you can still see on some creeks.

More likely today, it will require a battery-powered pressure transducer set inside a 2″ pipe bolted on the side of the weir, or headwall, or other permanent structure.  These cost from $400 to $1,200 or more, depending on the brand and more importantly, quality.  The higher the quality, the less they have to be checked, and have dirt removed from the bottom sensor.  The maintenance can be significant – in warm water with algae, the sensor might have to be cleaned once a week.  If it’s not maintained…well, then at some point it stops recording that data that the Board requires.


Here’s one that would do the job, from products/levelsensor.html.  It sits there and records water levels night and day, for months at a time before it has to be downloaded to a computer.  The data file that is downloaded is what is actually sent to the Board – a spreadsheet of flows for 6 months would be half an inch think and unusable!

That’s enough for now, a good night to you all.

Simple Weirs and Orifices, on video, and in photos!

Simple to set up weirs and orifices!

On YouTube:

01a_EW_1922_01This is a corner of a diversion box built by my wife’s grandfather, Emil Wigno, in 1922.  The fleur de lis he brought with him from France.  🙂   Emil planted hay, peaches, prunes, and finally walnuts.




Hi, I’m Shawn Pike.  🙂

Now 2″ x 6″ boards, cut 1/2″ to 1″ shorter than the width of the board slots, are stacked up in the diversion box.










The weir board is cut 3-1/2″ deep.  There are 2 weirs, one 1.0′ wide, and the other 0.5′ wide.  These are contracted weirs, since water on the edge has to turn to go through.04_1_Ft_Weir


The small weir is blocked off, so the 1.0′ weir is left.  This is a 1.0′ contracted weir, and the flow can be read right out of the correct table in the Water Measurement Manual.





By simply flipping the weir board upside down, we have an orifice!  If the downstream water is higher than the hole, then the orifice is “submerged”.  If the flow out the orifice is free-flowing, then a different equation is used.  Either way, calculating the flow is pretty easy because we know the orifice area, and depths of water upstream and downstream.

Here’s the pretty photographer and videographer, in the gold-mining town of Bodie.  🙂Wiggy_At_Bodie

From weir to orifice in only an hour

Orifice devices are needed for flat ditches, where the fall may be as little as 0.20′ (2.4″) from upstream to downstream.  An orifice is simply a hole through which water flows, so it can be accurately measured.  The photo below shows a submerged weir, flowing from right to left.  The water in the ditch downstream (left) is above the hole in the boards.Orifice_Side_Top_2 You already noticed the amazing thing about this orifice, didn’t you?  I could tell you are savvy that way.  Yes, this is the same Briggs Manufacturing weir box as the ones in the previous post!  It has the same 2″ lumber in the upstream board slot.  Now the flow goes through a precisely cut hole in the boards, with a known area, instead of over the top of the boards.

Staff_GageInstallation is just like with the weir boxes installed in the previous post, too.  For convenience, staff gages may be attached to one side of the box so it is quick to read the water depths.  So the precast concrete box is versatile, it can be used as both a weir and an orifice.  Actually, some ditches need both a weir and an orifice.  This is especially true in a ditch where a gate or boards may be put in the ditch below the weir box, to flood hay or pasture just below the measurement device.  All it takes is a change of a couple of boards.







The big difference in measuring the flow is that, instead of “sticking” the weir boards, now the depth of the water must be measured upstream and downstream to use a weir equation or table.  The “difference in head”, or water surface elevation, gives us a value needed to read the table or use an equation to figure out the flow.  What tables or equations?  These are out of the water measurement bible, the Water Measurement Manual.  We will discuss these very soon in following posts.

This was a quick post to show how you can get 2 uses out of one device, to make your life simpler.  That’s all for now, hope you had a Merry Christmas!


Weirs – Planning, Building, And Measuring Flows

Tomorrow is Christmas 2015!  Merry Christmas all.

Weirs are the least expensive permanent measurement device you can install.  Materials will cost the diverter in the range of $300 to $2,000; hiring the backhoe to set it in place probably costs more than the materials, unless the diverter already has a backhoe or crane.

The weir below was precast by Briggs Manufacturing in Willows.  The weir is a cast concrete, 3-sided box with board slots for 2″ lumber.  It’s pretty simple, and relatively easy to install.  This particular weirWeir_Showing_Board_Slotsneeded metal wing-walls to keep the dirt on the sides from washing out.  Note that there are two board slots on each side, one for the boards to slide in, and the other to help make sure a nappe or air gap is created as water flows over the boards.

Step one is determining if there is enough fall in head from upstream to downstream.  A weir needs 0.7 feet (0.7′), or 8.4 inches (8.4″) of fall to be sure it will work correctly.  The 0.7′ figure is because the pool of water needs to be a maximum of 0.45′ above the top of the weir boards on the  upstream side.  Then, the water in the ditch downstream of the weir needs to be at least 0.25′ below the top of the boards so the water flows freely, separating from the boards and having an air gap on the downstream side.  0.45′ + 0.25′ = 0.70′.Sticking_Weir_sharpened

The photo above shows a ruler in tenths of a foot, held vertically on top of the weir boards.  This is called “sticking the weir”.  When the ruler is turned face-on to the flow, the water will climb up to the same level as the flat pool upstream of the boards.  It’s physics – standing water has an energy level equal to the height of the water surface.  Moving water has both potential and kinetic energy, so the energy level or line is above the surface of the

Sticking_Weir_zoom_sharpenedwater.  Moving water stalls behind the face of the ruler, giving the height of the water if it were standing still.  That is the water depth that has to be measured for weirs.  The photo is showing a water level of 0.31′ – it wobbles up and down just a little – so we know this weir is flowing at about 0.6 cfs per foot of width.

If the ditch is very flat and shows no ripples when flowing, it’s probably too flat, and an orifice or a flume will be needed instead of a weir.  Future posts will discuss those measurement devices, and others too.

Step 2 is figuring out how big a box is needed.  Fortunately, there is an easy rule.  1.0′ feet of width is needed for every cubic foot per second (cfs) that will be diverted.  For example, if the diversion will be a maximum of 3 cfs, then the diverter will need a 3′ wide weir.contracted_weir  If in doubt, get the next larger size since the cost is not much more.  The reason for this rule is that a weir can be accurate to plus or minus 5%, well within the accuracy needed for diversions in the field.  If the pool upstream of the weir boards is more than 0.45′ over the top of the boards (or less than about 0.1′ over the top of the boards), the accuracy of the weir is worse than the standard.

Measurement devices need to be planned and operated correctly to assure the diverter (and ditch-tender, and neighbors, and the State Water Resources Control Board, andsuppressed_weirpossibly 10 other state and federal agencies, and possibly even the Superior Court in the very worst case) that the flow measurement is correct.  It’s like a truck speedometer – they can get less accurate over time.  It’s no problem if they read faster than the driver is actually driving, but if they read slower, the driver is in danger of unknowingly speeding and getting a ticket.  Ouch.

The actual installation process is fairly simple to describe.  Get 1 to 4 yards of 3/4″ minus road base rock delivered on site, trucked from the gravel plant.  To save a lot of hassle, skip the forming up and pouring a concrete weir, and just call Briggs Manufacturing and order a weir to be delivered on site.  Dig a shallow, level (flat), square hole in the bottom of the ditch, about 8″ deep, and 1′ longer and wider than the bottom of the weir.  Shovel base rock into the hole about 2″ deep, and compact it.  Rent a gas-powered thumper, or use the bucket of the backhoe.  Pour another 2″ and compact it.  Use a level and make sure the top of the base rock is level side to side, and along the ditch.  Since it packed down during compacting, add the last 1″ and compact it, so the top of the road base is about 4″ below the bottom of the ditch upstream and downstream.

The installer needs to make sure to have a piece of 1″ steel bar that is about 1′ longer than the the width of the weir box.  There is one hole through the top of each side of the weir – stick the rod through that and hook onto it with a chain to lift the weir.  Set it in place, and make sure it is sitting level.  The installer might have to gently press down on one side with the backhoe to get it completely level.  Now the floor of the weir will be at the level of the bottom of the ditch.  Remove the steel bar, and fill the weir box inside about 2′ deep with some dirt.

Next, install the wing-walls, if needed.  These will keep the material on the outsides of the weir from washing out in a steeper ditch.  Then backfill with the remaining road base on the sides, compacting it for each 6″ of depth.  If tNew_Weirhe native soil holds water well, it could be used instead of base rock to backfill, saving a little bit of money.  Remember the dirt that was placed 2′ deep inside the weir?  This will keep the weir weighted down so it does not move during backfilling.  Also, it will keep the sides from being slightly bent in by the pressure of compacting the backfill.  The reinforced concrete weir boxes are strong but the walls can be bent in with enough force.

That’s it!  The weir box is installed and ready to go.  New weir boards, usually 2″ x 6″ or 2″ x 8″, should be cut about 1″ shorter than the width inside the board slots.  For example, a 3′-wide weir will have board slots about 2″ deep.  The full width from inside of board slot, to inside of the opposite board slot, is 3′-4″.  The boards should be cut about 3′-3″ long.  That way, when they swell a little bit, they won’t get impossibly stuck.

Happy measuring!  Good night to all, Merry Christmas, and blessings in the New Year.